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APPLICATION OF CONTINUOUS THERMODYNAMICS TO 
POLYMER FRACTIONATION 

M. T. RATZSCH,” H. KEHLEN, and L. TSCHERSICH 

Chemistry Department 
“Carl Schorlemmer” Technical University 
DDR-4200 Merseburg, German Democratic Republic 

ABSTRACT 

Continuous thermodynamics was developed in recent years and applied 
successfully to the liquid-liquid equilibrium of polydisperse polymer 
solutions. Continuous thermodynamics is based on the direct use of 
continuous distribution functions in the thermodynamic equations. 
There is no need for a reduction to pseudocomponents. This paper 
presents the application of continuous thermodynamics to successive 
polymer fractionation procedures based on solubility differences. In 
this way, simple equations for the distribution function of the different 
polymer fractions are obtained. Furthermore, the other equations 
describing the fractionation possess a lucid structure favorable for com- 
puter simulations of the fractionation procedures. 

INTRODUCTION 

Fractionation is the most important method to investigate the composition 
of polydisperse polymers. Small differences in solubility of the polymer species 
with different molecular weights are used for separating the polymer species. 
G .  B. Schulz [ 1, 21 was the first to present a mathematical treatment of suc- 
cessive fractionation experiments. In the 1960s and 1970s Tung [3], Konings- 
veld and Stavermann [4] , as well as Kamide et al. [5-81, simulated a number 
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922 RATZSCH, KEHLEN, AND TSCHERSICH 

of successive fractionation processes. In all these papers, pseudocomponents 
were used to describe the polymer polydispersity. 

and has proved to be the most convenient method for treating the polydis- 
persity of many industrially important mixtures. This method was applied 
to vapor-liquid equilibrium, especially of complex hydrocarbon systems, to 
liquid-liquid equilibrium, especially of polymer solutions and of polymer 
mixtures, and to stability considerations. In continuous thermodynamics the 
distribution functions describing the polydispersity are directly used in the 
thermodynamic calculations without an arbitrary splitting into pseudocompo- 
nents. In this paper, continuous thermodynamics is applied to three different 
fractionation procedures for polydisperse polymers: successive precipitation, 
successive dissolution, and refractionation. 

Continuous thermodynamics has been developed within the last four years 

PHASE EQUl Ll BRlUM 

The liquid-liquid equilibrium (LLE) of polymer solutions forms the thermo- 
dynamic background for these fractionation procedures. The treatment of the 
LLE by continuous thermodynamics was presented earlier [9, 101 . Only the 
most important equations will be summarized here, and a somewhat different 
formulation convenient for generalization to fractionations will be introduced. 

A solution of a Solvent A and a polydisperse Polymer B is considered. The 
individual species ofBolymer B are identified by their segment numbers, r, 
which is defined as the ratio of the hard-core volume of the species considered 
to the hard-core volume of an arbitrarily chosen standard segment. This re- 
sults in 

where M is the molecular weight of the polymer species considered and Mseg 
is the molecular weight of a polymer segment possessing the same hard-core 
volume as the chosen standard segment. 

r as continuously variable quantities. The segment number of the solvent is 
r A .  The composition of the polymer is described by the distribution func- 
tion W(r), defined by the statement that W(r)dr gives the fraction of all poly- 
mer segments that come from those polymeric species with segment numbers 
between r and r t dr. If ro is the lowest and ro the hghest occurring segment 
number of polymer molecules, the normalization relation reads 

The essence of continuous thermodynamics consists in considering M and 
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CONTINUOUS THERMODYNAMICS 923 

Yo 

IW(r)dr = 1 ; where represents lo. 
In continuous thermodynamics the condition for equilibrium between two 

Phases ' and " as expressed by the chemical potentials is written 

Equation (4) is valid for all segment numbers occurring from ro to ro . 

the pressure to be constant: 
The chemical potentials may be written as follows [9, 101 by considering 

The first term is the reference chemical potential, the second term is the 
well-known Flory-Huggins contribution (with x = 0), and the last term de- 
scribes the deviation from such a Flory-Huggins mixture. The quantities 
7" and Tg(r), named segment molar activity coefficients, are introduced 
for this purpose, and in the general case they depend on T, $, and W(r). 
$ is the overall segment fraction of the polymer, and r is the number- 
average segment number for the phase considered, defined by 

- 

Combination of Eqs. (3) and (4) with Eqs. ( 5 )  and ( 6 )  results in 

+"W1(r) = JlfW(r) exp (rpg(r)), (9) 

with 
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924 RATZSCH, KEHLEN, A N D  TSCHERSICH 

In phase-separation experiments, a feed phase F is split into the two co- 
existing Phases ' and ". The fraction of the feed volume that forms Phase " 
is given by the quantity 6, i.e., 6 equals the total amount of segments (poly- 
mer and solvent in Phase " divided by the total amount of segments (poly- 
mer and solvent) in the feed. Hence, the mass balance for the polymer species 
in continuous thermodynamics reads 

and, after integration, 

Equation(7) with Eqs. (12) and (13) leads to the relation 

In phase-separation experiments the composition of the feed (i.e., $F and 
@(r)) is usually known. The relations between the quantities referring to 
Phase ' and those referring to Phase " are provided by Eqs. (12)-(14), which 
permit the elimination of the quantities of one of the two coexisting phases, 
e.g., of those referring to Phase '. 

Combination of Eqs. (9) and (12) results in 

This equation interrelates the distribution function W"(r) in the unknown 
Phase " and the feed distribution @(r). 

P B ( ~ )  also depends on W"(r) via ?B'(r) and YB''(r) according to Eq. (1 1). 
In applying this relation, one has to keep in mind that, in the general case, 
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CONT I N UOUS THE R MODY N AM I CS 925 

The expressions for the segment-molar activity coefficients, TA and TB(r), are 
obtained from the excess Gibbs energy relation used [9, 101. In the general 
case, the excess Gibbs energy depends on T, $, and the distribution 
function W(r).  But in many relations used in practice, the dependence on 
W(r) is neglected as an acceptable approximation. Then the segment-molar 
activity coefficients also do not depend on W(r), and 7~ does not depend on 
the independent variable r [9, 101. Then PB also does not depend on r, and 
it depends on W”(r) only by way of 7‘. This quantity is a function of W”(r),  
i.e., a number. Considering this number as an additional unknown of the 
problem, Eq. (15) provides a direct and explicit relation for calculation of 
W”(r) from the feed distribution f l ( r ) .  

Of course, this relation contains the unknowns of the problem, $ , r , 
and 4 (or T),  but these quantities are simply unknown numbers and not un- 
knownfunctions. Hence, it proves possible in this way to separate the prob- 
lem of the unknown distribution functions from the problem of the other 
unknowns and to solve the function problem exactly. A simple example for 
this possibility is provided by Huggins’ X-parameter concept 

r i  71  

If, on the other hand, the excess Gibbs energy depends on the distribution 
function, then this dependence usually is provided by the occurrence of fur- 
ther functionals (e.g., moments) of the distribution function. This means 
that, in this case also, the separation is possible and that the exact solution 
of the distribution function problem is again provided by Eq. (1 5). The only 
difference is that, in addition to $”, F r ,  and @ (or T),  the functionals men- 
tioned occur as further unknown numbers of the problem. In the following, 
for simplicity, such additional unknowns are assumed not to occur. However, 
the generalization to more general cases is straightforward. 

In treating polymer fractionation, it is convenient to introduce the preci- 
pitation rate K [ 1, 1 1, 121 . In the continuous case, K is a continuous func- 
tion of r defined as the quotient of the amounts of segments of all polymer 
species with segment numbers between r and r t dr in phase ” and in the feed 
phase F, respectively: 

Equation (15) permits us to write 
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926 RATZSCH, KEHLEN, AND TSCHERSICH 

The introduction of the precipitation rate K(r) permits us to obtain from Eqs. 
(1 2) and (1 5) the simple relations 

As discussed above, these relations provide the unknown distribution func- 
tions Wr(r) and W”(r) directly. The other unknowns of the problem, $”, 
r , and @ (or T),  may be calculated from the relations 1 I 

Equations ( 2  1)-(23) are obtained from Eqs. (8) and ( 1  3),  from Eqs. ( 2 )  and 
(20), and from the Eqs. (7) and (22) ,  respectively. 

FRACTIONATION PROCEDURES 

Figure 1 presents the schemes for successive precipitation fractionation 
(SPF) 171 , successive solution fractionation (SSF) [7] , and a refractionation 
(RF) [S] . In all three cases a homogeneous polymer solution, called “feed 
phase F,” by lowering the temperature is split into two coexisting phases, a 
polymer-lean Phase ’ and a polymer-rich Phase ’ r ,  which are then separated. 
In SPF the polymer is isolated from Phase ” as Fraction 1. Phase ’ directly 
forms the feed phase for the next fractionation step, etc. 
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CONTINUOUS THERMODYNAMICS 927 

step 1 

step 2 

I 
I F -2 

b )  , P I  , 

F 1  

F 2  

I 

step 1 1 
step 2 1 

phase 
separation a 

phase 
separation b 

1 
1 

step 1 

I 

FIG. 1. Schemes of fractionation procedures. a) Successive precipitation 
fractionation (SPF), b) successive solution fractionation (SSF), and c) refrac- 
tionation (RF). Double rectangles: Original feed,phase or intermediate feed 
phases with amounts of segments equal to that in the original feed phase. 
Single rectangles: Phase ' (polymer-lean phase). Striped rectangles: Phase " 
(polymer-rich phase), F1,  F2 ,  . . . = Fraction 1, Fraction 2 ,  . . . . 
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928 RATZSCH, KEHLEN, AND TSCHERSICH 

In the case of SSF, Fraction 1 is obtained from Phase I .  Phase " is diluted 
by adding solvent up to the volume of the original feed phase, corresponding, 
to a very good approximation, to the same total amount of segments. This 
phase is used as the feed phase for Step 2, etc. 

In the RF procedure, each step consists of two phase separations. The 
separation described above is signified by phase separation a. The Phase " 
obtained in this separation is diluted up to the volume of the original feed in 
the same way as in the SSF procedure, and then it forms the feed for phase 
separation b. Fraction 1 is isolated from the polymer-rich Phase " of this 
phase separation b.  The polymer-lean Phases of the separations a and b are 
united and concentrated up to the volume of the original feed phase. This 
phase now forms the feed for Step 2, etc. 

In the last fractionation step the polymer of Phase in the case of SPF, 
of Phase " in the case of SSF, and of the united Phases ' for RF forms the 
final polymer fraction. 

All coexisting pairs of Phases ' and I '  are presumed to be in equilibrium. 
Hence, it is possible to apply Eqs. (1)423). To indicate the different sepa- 
ration steps l ,  2, . . ., the corresponding number, in general i, j ,  or k, is added 
as a subscript. 

In the case of refractionation it is necessary to distinguish between the 
two phase separations a and b in each fractionation step. This is done by add- 
ing the letters a or b to the subscript, respectively. 

SUCCESSIVE PRECIPITATION FRACTIONATION 

In SPF, Phase ' from Step i is used directly as the feed phase for Step (i + 
1). Hence, the following relations are valid: 

On adding the Subscript i, Eq. (20) reads 

4% 
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CO NT I N UO US TH E R MO DY N A M I CS 9 29 

Use of Eqs. (19), (24), and (25) for successive substitutions results in 

Equation (28) permits the direct and explicit calculation of the distribution 
function of the polymer fraction i, Wj“(r), from the distribution function 
WIF(r)  of the original polymer. The form of this relation corresponds to the 
fractionation scheme applied. In Steps j = 1, . . . , i - 1 the polymer-lean 
Phase ’ is taken to correspond to the occurrence of the factor (1 - Kj(r))/ 
(1 - @j)  for j = 1, . . . , i - 1, according to Eq. (19). In Step i, the polymer- 
rich Phase ” is taken to correspond to the factor Ki(r)/@j, according to 
Eq. (20). 

tion, i.e., $ l F  and WIF(r) ,  must be given. Furthermore, Eq. (28) contains 
the unknowns $ j ” ,  G”, and @j (or Tj) for j  = 1, . . . , i. These quantities are 
to be calculated successively, i.e., at first for j = 1, then for j  = 2, etc., from 
the relations 

To perform the calculation, the composition of the original polymer solu- 

Equation (29) is Eq. (21) as applied to Step j ,  Equation (30) is obtained in 
an analogous way from Eq. (28) by integration, and Eq. (3 1) is obtained 
analogously from Eq. (7) and Eq. (28). 

SUCCESSIVE SOLUTION FRACTIONATION 

According to the remarks made above, the total number of segments in SSF 
is the same to a very good approximation in all feed phases. This leads to the 
relation 
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From Eqs. (19) and (20), as applied to fractionation Step i, the distribution 
function of the ith polymer fraction Wi’(r) can be derived in a direct and ex- 
plicit form: 

Again, this relation corresponds to the fractionation scheme. In Steps j = 1, 
. . . , i - 1, the polymer-rich Phase ” is taken to correspond to the occurrence 
of the factor Kj(r) for j = 1 ,  . . . , i - 1, according to Eq. (20). (The denomina- 
tor 4 is absent due to the occurrence of Cp in Eq. 32.) The polymer-lean 
Phase in Step i is taken to correspond to the factor (1 - Ki(r))/( 1 - &), ac- 
cording to Eq. (19). The unknown quantities +j”, <“, and 4, (or q) for 
j = 1, . . . , i can be calculated successively with the help of the three equa- 
tions 

These relations correspond to Eqs. (29)-(31) for the case of SPF 

REF RACTl ON AT1 ON 

The continuous thermodynamic treatment of both basic types of successive 
fractionation, SPF and SSF, has been shown above. Other successive fraction- 
ation procedures can be treated by an appropriate combination of these two 
types. 

In the refractionation discussed above (Fig. lc), the following relations 
are valid: 
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CONTINUOUS THERMODYNAMICS 93 1 

From Eq. (27), after adding the index a or b, these relations become 

and, by successive substitution, give 

Here, Wibtt(r) is the distribution function of Fraction i. Equation (41) per- 
mits the direct and explicit calculation of Wid’(r) from the distribution funG 
tion W l U F ( r )  of the original polymer. The structure of this relation corre- 
sponds to the fractionation scheme (Fig. lc). The factor [ 1 - Kia(r)Kib(r)] 
occurs in the Stepsj  = 1, . . . , i - 1 according to Eq. (39). In Step i, Phase It 
is taken for phase separation a as well as b, resulting in the occurrence of the 
factors Kiu/’@iu and Kib/Qib according to Eq. (27). Finally, @iu cancels ac- 
cording to the balance of Eq. (37). 

To perform the calculation, the composition of the original polymer solu- 
tion, i.e., $ l a F  and W l u F ( r ) ,  must be given. Furthermore, Eq. (41) contains 
the unknowns $ jU l1 ,  $jb”,  ria , rjb , @ja, and @jb(or Tjo and Tjb) fo r i  = 1, 
. . . , i. These quantities are to be calculated step by step in the series j = I ,  
j = 2, etc. The quantities referring to phase separation a can be computed 
from the relations 

11 - I t  - 
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932 RATZSCH, KEHLEN, AND TSCHERSICH 

j -  1 

n [1 - Kka(r)Kkb(r)l  d’laFWlaF(r)dr. 
k =  1 

(44) 

These relations correspond to Eqs. (29)-(3 1) for SPF. They differ in the use 
of Eq. (40) for refractionation instead of Eq. (28) for SPF. When the quan- 
tities $ja , ria , and @ja (or Tja) are known in this way, the unknowns 
$ jb” ,  rib‘‘,  and @jb (or q b )  may be computed from the relations 

If - I f  

(45) 
1 - J/ibF 1 - $ j b f f  = 

@jb - @jb)  exp ( - r A P A j b ) ’  

These relations for phase separation b completely correspond to Eqs. (42)- 
(44) for phase separation a. 

EXAMPLE 

A computer-simulated refractionation according to Fig. l(c) will be con- 
sidered as an example. To perform the calculations, specific conditions must 
be chosen. The composition of the original polymer solution shall be given by 

where the polymer distribution is assumed to be described by the Schulz- 
Flory function 

The segment-molar activity coefficients shall be given by the Huggins x- 
parameter concept, Eq. (16), adding the subscripts ia or ib. Furthermore, two 
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CONTINUOUS THERMODYNAMICS 933 

of the four quantities @ial Tia,  @jb, and Tib  are to be chosen arbitrarily. This 
is done 1) by choosing Tia Tib ,  resulting in 

according to Eq. (16), and 2) by stating that there shall be five fractions con- 
taining equal masses, i.e., equal amounts of segments of the polymer. On in- 
troducing the quantities yia and q jb  as the quotients of the total amount of 
polymer segments in Phase " of the considered phase separation and in the 
original polymer, respectively, i.e., 

(bia dJia " (bib $ib" 
q ib  =- 

+iaF ' 
4ia = ___ 

+iaF ' 

Condition 2) may be expressed by 

q jb  =0.2, i =  1 , .  . . , 4 .  (52) 

The system of Eqs. (42)-(47) was solved numerically for these conditions. 
Due to the simple structure of Eqs. (42) and (49 ,  it was possible to eliminate 
ria'' and &," and to reduce, in this way, the system of equations to be solved. 

The results of the computer simulation are presented in Table 1 and in 
Fig. 2. The number-average segment number Fn and the weight-average seg- 
ment number ?,,, are obtained from 

- 

TABLE 1. Computer Simulation of Refractionation 

Original 150 300 1.0 - - - - 

1 524.6 597.6 0.14 0.354 0.584 0.181 0.190 

2 351.0 381.3 0.09 0.332 0.606 0.224 0.231 

3 247.4 265.3 0.07 0.293 0.635 0.279 0.285 
4 162.1 174.2 0.07 0.248 0.692 0.371 0.374 
5 54.4 81.5 0.50 .. . - - - 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
5
4
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



934 RATZSCH, KEHLEN, AND TSCHERSICH 

q w [ r ) l  

0.002 

0.001 

0 200 400 600 O r  

FIG. 2. Computer simulation of refractionation. Distribution functions 
multiplied by q for the original polymer (q  = 1) and for Fractions 1-5. Curve 
l a  refers to phase separation a in Step 1. 

and (Fw/Fn)  - 1 measures the degree of heterogeneity. 
Figure 2 presents the distribution functions of polymer fractions 1-5 mul- 

tiplied by the corresponding value of 4. Therefore, summation of Curves 1-5 
results in the curve for the original polymer. In the example, q equals 0.2 for 
all five fractions. Curve l a  shows the distribution function W 1 i f ( r )  multiplied 

Comparison of the example presented in Table 1 and Fig. 2 with other ex- 
amples based on other conditions shows that equality of temperatures for 
phase separations a and b in each step is a very favorable experimental condi- 
tion. The fractionation efficiency is near the optimum. 

by 410. 
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